Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available July 22, 2026
- 
            Free, publicly-accessible full text available March 3, 2026
- 
            Literacy assessment is essential for effective literacy instruction and training. However, traditional paper-based literacy assessments are typically decontextualized and may cause stress and anxiety for test takers. In contrast, serious games and game environments allow for the assessment of literacy in more authentic and engaging ways, which has some potential to increase the assessment’s validity and reliability. The primary objective of this study is to examine the feasibility of a novel approach for stealthily assessing literacy skills using games in an intelligent tutoring system (ITS) designed for reading comprehension strategy training. We investigated the degree to which learners’ game performance and enjoyment predicted their scores on standardized reading tests. Amazon Mechanical Turk participants (n = 211) played three games in iSTART and self-reported their level of game enjoyment after each game. Participants also completed the Gates–MacGinitie Reading Test (GMRT), which includes vocabulary knowledge and reading comprehension measures. The results indicated that participants’ performance in each game as well as the combined performance across all three games predicted their literacy skills. However, the relations between game enjoyment and literacy skills varied across games. These findings suggest the potential of leveraging serious games to assess students’ literacy skills and improve the adaptivity of game-based learning environments.more » « less
- 
            Abstract Phytophthora root rot, caused by oomycete pathogens in the Phytophthora genus, poses a significant threat to soybean productivity. While resistance mechanisms againstPhytophthora sojaehave been extensively studied in soybean, the molecular basis underlying immune responses toPhytophthora sansomeanaremains unclear. In this study, we investigated transcriptomic and epigenetic responses of two resistant (Colfax and NE2701) and two susceptible (Williams 82 and Senaki) soybean lines at four time points (2, 4, 8, and 16 h post inoculation [hpi]) afterP. sansomeanainoculation. Comparative transcriptomic analyses revealed a greater number of differentially expressed genes (DEGs) upon pathogen inoculation in resistant lines, particularly at 8 and 16 hpi. These DEGs were predominantly associated with defense response, ethylene, and reactive oxygen species‐mediated defense pathways. Moreover, DE transposons were predominantly upregulated after inoculation, and more of them were enriched near genes in Colfax than other soybean lines. Notably, we identified a long non‐coding RNA (lncRNA) within the mapped region of the resistance gene that exhibited exclusive upregulation in the resistant lines after inoculation, potentially regulating two flankingLURP‐one‐relatedgenes. Furthermore, DNA methylation analysis revealed increased CHH (where H = A, T, or C) methylation levels in lncRNAs after inoculation, with delayed responses in Colfax compared to Williams 82. Overall, our results provide comprehensive insights into soybean responses toP. sansomeana, highlighting potential roles of lncRNAs and epigenetic regulation in plant defense.more » « less
- 
            null (Ed.)Cellulose-based materials have gained increasing attention for the development of low cost, eco-friendly technologies, and more recently, as functional materials in triboelectric nanogenerators (TENGs). However, the low output performance of cellulose-based TENGs severely restricts their versatility and employment in emerging smart building and smart city applications. Here, we report a high output performance of a commercial cellulosic material-based energy harvesting floor (CEHF). Benefiting from the significant difference in the triboelectric properties between weighing and nitrocellulose papers, high surface roughness achieved by a newly developed mechanical exfoliation method, and large overall contact area via a multilayered device structure, the CEHF (25 cm × 15 cm × 1.2 cm) exhibits excellent output performance with a maximum output voltage, current, and power peak values of 360 V, 250 μA, and 5 mW, respectively. It can be directly installed or integrated with regular flooring products to effectively convert human body movements into electricity and shows good durability and stability. Moreover, a wireless transmission sensing system that can produce a 1:1 footstep-to-signal (transmitted and received) ratio is instantaneously powered by a TENG based entirely on cellulosic materials for the first time. This work provides a feasible and effective way to utilize commercial cellulosic materials to construct self-powered wireless transmission systems for real-time sensing applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available